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Low firing rates: an effective Hamiltonian for 
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$ INFN, Dipartimento di Fisica, Universita ‘La Sapienza’, Roma, Italy 
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Abstract. We analyse the behaviour of an attractor neural network which exhibits low 
mean temporal activity levels, despite the fact that the intrinsic neuronal cycle time is very 
short (2-3 ms). Information and computation are represented on the excitatory neurons 
only. The influence of inhibitory neurons, which are assumed to react on a shorter timescale 
than the excitatory ones, is expressed as an effective interaction of the excitatory neurons. 
This leads to an effective model, which describes the interplay of excitation and inhibition 
acting on excitatory neurons in terms of the excitatory neural variables alone. 

The network operates in the presence of fast noise, which is large relative to the frozen 
randomness induced by the stored patterns. The overall fraction of active neurons is 
controlled by a single free parameter, which expresses the relative strength of the effective 
inhibition. Associative retrieval is identified, as usual, with the breakdown of ergodicity 
in the dynamics of the network, in particular with the presence of dynamical attractors 
corresponding to the retrieval of a given pattern. In such an attractor, the activity of 
neurons corresponding to active sites in the stored patterns increases at the expense of 
other neurons. Yet only a small fraction of the neurons active in the pattern are in the 
active state in each elementary time cycle, and they vary from cycle to cycle in an 
uncorrelated fashion, due to the noise. Hence, the observed mean activity rate of any 
individual neuron is kept low. This scenario is demonstrated by an analytical study based 
on the replica method, and the results are tested by numerical simulations. 

1. Introduction 

The attractor neural networks, which have been proposed in recent years (Hopfield 
1982, 1984) to model associative memory in biological systems, combine collective 
properties emerging from very strong feedback with transparency to analytic investiga- 
tion (Amit et al 1985a, b, 1987a). A number of drastic simplifying assumptions have 
been called upon to produce this result. Subsequently, the properties of the network 
have been shown to be robust when many of the simplifications are lifted: full 
connectivity is not essential, nor are detailed synaptic efficacies (Sompolinsky 1987); 
the synaptic connections need not be symmetric, and can be extremely diluted (Gut- 
freund 1987, Derrida et a/ 1987); individual neurons can be assigned a unique excitatory 
or inhibitory function, according to Dale’s Law (Shinomoto 1987); the spatial mean 
of the network activity need not be f (Amit et a1 1987b, Tsodyks and Feigelman 1988, 
Buhmann et a1 1988). 

B On leave from the Racah Institute of Physics, Hebrew University, Jerusalem, Israel. 
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However, other assumptions, as well as some resulting features, remain objection- 
able from a biological point of view. We address here another important problem of 
the models proposed so far: the resulting high spike rates of individual neurons upon 
retrieval. This issue is at the core of the attractor interpretation of memory retrieval. 
In the attractor dynamics, such as the ‘standard’ Hopfield scheme in the absence of 
noise, the network arrives, in its flow in configuration space, to a fixed point. Presence 
in a fixed point implies that some of the neurons are firing at their maximal rate, which 
corresponds to a few hundred spikes per second (Amit 1987). But available recordings 
from cells in associative areas of the cortex do not show such high rates: the most 
active neurons appear to fire in the order of tens, up to a hundred, spikes per second 
(Abeles 1982, Anderson and Mountcastle 1983, Sur et a1 1984, Goldberg and Bruce 
1985, Miyashita and Chang 1988). 

The root of the problem is that, during retrieval, a fraction of the neurons is 
constantly in the active state. A constant neuronal activity is interpreted in terms of 
spike rates per second, and the correspondence is fixed by the dynamical characteristics 
of the neurons being modelled. A consistent representation of biological neurons by 
two-state variables that are updated at typical time intervals T, assumes that 7 is of 
the order of the absolute refractory period of the neuron and of its effective integration 
time constant, which in turn are of the same order of magnitude. It then follows that 
a model neuron that remains for a certain duration in its active state simulates a real 
neuron that fires at the high rates mentioned above (Hopfield 1984). Introducing noise 
does not help. Although some of the neurons may now change their state, the bulk 
of them will still be essentially frozen either ‘on’ or ‘off’. At most, when the noise level 
is already so high as to almost restore ergodicity (and destroy retrieval), neurons will 
have close to equal probabilities to be in either state, thereby reducing the resulting 
spike rates by only f. But then also the mean activity of neurons that should be 
quiescent will be close to $. 

We have recently proposed an attractor neural network (Amit and Treves 1989), 
which is a modified version of the standard model. This model demonstrates that the 
high rate problem is not a necessary feature of the attractor paradigm, but only a 
consequence of realising it as a flow toward fixed points in the configuration space of 
the network. In the proposed model, ergodicity is broken at suitably low levels of 
noise, but still the noise level is high enough to keep changing the state of almost all 
neurons participating in retrieval, at every elementary cycle. The attractors that domi- 
nate the dynamics lie close to the configuration with all the N neurons quiescent, but 
at a finite Hamming distance Nv, which is the same for all attractors and is determined 
by a free parameter of the model. Thus, a small fraction v of the neurons are active 
in each attractor. This fraction, however, is not made up to Nu neurons that freeze 
in their active state (this is essentially the case in models with low sparial mean activity), 
but rather of a much wider set of neurons that have a definite (and low) probability 
of being active. In terms of the time evolution of the network, the neurons that are 
in the active state are chosen at random (i.e. by fast noise) at each time step, according 
to certnin probability distributions characterising each attractor. In other words, each 
attractor represents a stochastic sequence of configurations, and each individual neuron 
is quiescent in most of the configurations of the sequence. It is via this strong 
stochasticity of the attractors that we bridge the gap between the neuronal fast cycle 
time and the low activity rates upon retrieval. 

The model is based on the separation between the dynamics of the excitatory 
neurons and that of the inhibitory neurons. The former are assumed to carry all the 
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information relevant for retrieval, while the latter have the role of regulating the overall 
activity of the network of the excitatory neurons. The dynamics of the inhibitory 
neurons is assumed to proceed on a faster timescale, possibly modelling the more local 
nature of the inhibition. The inhibition resulting from a given excitatory activity 
distribution may then be expressed in an  effective way as a function of the excitatory 
activity itself. In this way one can reduce the dynamical variables to the activity states 
of excitatory neurons only. Within this picture the resulting firing rates are determined, 
at an arbitrary low level, by a single additional free parameter, which represents the 
strength of the inhibitory effective coupling relative to the excitatory interactions. 

In addition to suggesting a solution to the rates problem, the model is biologically 
more plausible on several other counts. 

1. The distinction between excitatory and  inhibitory neurons is not merely formal, 
but attempts to reproduce and interpret functional differences. In particular, a scheme 
is suggested that takes into account the more local nature of inhibition, and the 
non-linear summation of inhibitory inputs. 

2 .  The information content of the network is stored, essentially, only in the excita- 
tory-excitatory synapses, the ones that are expected to be plastic (see, e.g., Eccles 1964). 

3. The excitatory synaptic efficacies are closer to the original Hebb rule (Hebb 
1949), i.e. they are enhanced only by coincidences in the activity of the pre- and  
post-synaptic neurons. Recall that in the standard model they were enhanced also 
when both neurons were quiescent. 

4. Only firing neurons, among the excitatory ones, participate in the retrieval 
process, while in the standard model also quiescent neurons intervened in stabilising 
the attractors. 

Despite these differences, and  the fact that the pertinent asymptotic behaviour is 
of a different nature, the model is still amenable to a detailed analysis, similar to the 
one developed for the standard model (Amit et a1 1985a, 1987a). It therefore provides 
the basic insights necessary for more complex situations that can be only partially 
explored by analytic means. 

The present paper is structured as follows: in § 2 we consider a network comprising 
both excitatory and inhibitory neurons, and we suggest a description of its relevant 
behaviour in terms of an  effective model consisting of excitatory neurons only. In 0 3 
we discuss the scenario appropriate to the cognitive function of associative memory 
retrieval, and  in § 4 we formulate a mean-field analysis of the model. In § 5 we illustrate 
the phase diagram at low memory loading, while the corrections to this simplified 
picture are treated in 0 6. In § 7 we present the results of sample simulations, and  in 
the last section we conclude and discuss possible future developments. 

2. An effective Hamiltonian for excitatory neurons 

We consider a network composed of N excitatory and N inhibitory neurons, represen- 
ted by two-state (0, 1) variables V, ,  i = 1 , .  . . , N ;  v,, k = 1 , .  . . , N. A ‘1’ represents a 
neuron that emits a single spike in a given discrete time slice which is of the order of 
the absolute refractory period; a ‘0’ represents a neuron that is quiescent in that time 
slice. We assume that only the excitatory neurons are involved in associative retrieval. 
Accordingly, the network would store p patterns, o r  activity distributions of the 
excitatory neurons, defined by p N-bit words ~ y (  =0, l) ,  p = 1, .  . . , p .  If the excitatory 
neuron i has v? = 1, it is expected to have a n  enhanced activity rate upon retrieval of 
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pattern p, while if 77 = 0, its rate should be depressed relative to the overall mean 
activity rate. The 7) are random and are chosen independently with a probability 
distribution 

(1) 

Note the following. 
1. We require only an enhanced activity rate for neurons participating in retrieval 

of a given pattern, and not the maximal rate corresponding to a constant Vi = 1. 
2. The mean number of such neurons will be UN, and we shall assume 0 < a << 1; 

this sparse coding implies that spatial firing rates will also be low (Amit er a1 1987b, 
Tsodyks and Feigelman 1988, Buhmann et al 1988). 

P ( 7 ) )  = as(  7) - 1 ) +  (1 - a ) 6 ( 7 ) ) .  

2.1. A dynamics with two timescales-fast inhibition 

The dynamical evolution of the excitatory sub-network is asynchronous, which is 
captured by assuming that it takes place in a time discretised in units At  = r /  N, where 
r is the timescale of the single neuron dynamics (Peretto and Niez 1986). At each 
time step one of the neurons will update its state according to a Glauber process 
(Glauber 1963) 

P ( V , ( t + A t ) =  l)=[exp(-ph,(r))+l]-’  (2) 
where p-’  = T measures the amount of stochastic noise in the process, and hi is the 
local field (post-synaptic potential) representing the total effect of the network activity 
at time t on excitatory neuron i. 

We assume hi to be the sum of excitatory and inhibitory terms. The excitatory part 
is the sum of contributions from all other excitatory neurons through direct synaptic 
coupling: 

N 

where the synaptic couplings assume the form 

Note that since 7) = 0, 1, a pair of neurons which are inactive in a pattern does not 
contribute to strengthening the synaptic efficacies?. 

The inhibitory part of the local field reflects the activity of the inhibitory neurons. 
The dynamics of the inhibitory neurons is assumed to be of the same type, but taking 
place at a faster rate, f - ’ .  This assumption is intended to account for the typically 
shorter spatial range of the inhibition, which results in a shorter mean time needed by 
inhibitory neurons to react on excitatory ones, as mentioned at the end of this section. 
The post-synaptic potential of inhibitory neurons is supposed to include excitatory 
and inhibitory contributions, but is taken to be roughly uniform, i.e. the same for all 
inhibitory neurons. This is another aspect of the hypothesis that the only structured 
information carried by the synaptic weights concerns the activity of excitatory neurons. 
In the same spirit, we assume that the weight of inhibitory synapses affecting excitatory 

t This should be compared and contrasted with Willshaw’s matrix (Willshaw er a /  1969) employed recently 
by Rubin and Sompolinsky (1989) in a model which also addresses the issue of low firing rates. 
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neurons does not depend on the pre-sytlaptic neuron. Then, the firing activities of 
single inhibitory neurons d o  not have individual significance, but rather it is their 
overall mean activity. 

that is relevant for the behaviour of the excitatory part of the network. I f  7 is sufficiently 
shorter than T, the mean inhibitory activity I relaxes to the value determined by the 
current excitatory activity distribution, before excitatory neurons have had the time to 
modify appreciably their configuration. Then the inhibitory contribution to the local 
field of excitatory neurons can be written 

h l ( t ) =  h ~ ( ~ ( t ) ) ~ h ~ ( Z ( { V , ( f ) } ) )  ( 5 )  

i.e. the inhibition can be expressed as a function of the V, at the same time t .  

2.2. Effective dynamics of the excitatory neurons 

The above considerations suggest the elimination of the inhibitory neurons as dynamical 
variables. They regulate the mean activity level of the network by providing an  
inhibition which is a function of a suitably averaged excitatory activity. Such a 
mechanism is robust if the inhibitory contribution h’ is stronger than a linear function 
of the excitatory activities, in the sense that the balance between a non-linear h i  and  
the linear h E ,  equation (3) ,  will produce a well defined mean activity rate at  equilibrium. 
An instantaneous activity lower than this mean will grow due to a stronger excitation, 
while an  excess of activity will be damped by overwhelming inhibition. We make a 
simple choice and restrict oLrselves to a quadratic function. The inhibitory contribution 
to excitatory neuron i is written as 

Here the first term in brackets is a factor that depends on the post-synaptic excitatory 
neuron, and  enhances the inhibition of those neurons that are active in more patterns. 
There is a new free parameter, w, which determines the overall strength of the inhibition 
compared to the excitation. The reason for taking the average of the excitatory activity 
weighted with the 7, in the term in the second set of brackets, will become clearer in 
the following. 

The form chosen for the inhibition is equivalent to a set of triadic couplings between 
excitatory neurons. However, we d o  not assume the existence of such couplings. It 
is of the nature of effective interactions, mediated by invisible dynamical variables, to 
take the form of multiparticle interactions. Nor is the limit 7<< T intended to correspoild 
to a real physiological situation. Rather, the aim of these assumptions is to describe 
in a simplified, effective way a plurality of biological features. 

1. Inhibitory neurons are cells with different morphological and physiological 
properties from excitatory ones. Their action is of a more local nature, and this implies 
shorter transmission times for inhibitory signals. They may react on the nearby 
excitatory neurons in a shorter time than the typical time needed by the excitatory 
neurons, which are on average more distant, to exchange information (Bower 1988). 
This situation can be modelled by assuming f < 7, which is a n  effective representation 
in a network which is not endowed with geometrical structure. 
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2. Inhibitory mechanisms are intrinsically different from excitatory ones (Fatt and 
Katz 1953, Segev and Rall 1987). Rather than provide an hyperpolarising potential, 
an activated inhibitory synapse will, usually, only increase the membrane conductance 
of the post-synaptic neuron, thereby tending to shunt the local dendritic branch (Segev 
and Parnas 1983). In a model network in which the geometrical structure is neglected, 
this may be described by assuming a strongly non-linear function h’ ,  as in ( 6 ) .  

The main advantage of the specific interaction, equation ( 6 ) ,  is that the dynamics 
of the excitatory network can be described in terms of an effective Hamiltonian. This 
Hamiltonian has a single new free parameter, v. In fact, we can assign an ‘energy’ to 
each firing configuration of the excitatory neurons as 

and thus the behaviour of the network can be analysed by means of the same kind of 
thermodynamical treatment developed for the Hopfield model (Amit et a1 1985a, b, 
1987a). 

3. The new retrieval scenario 

In a system described by a Hamiltonian and subject to stochastic noise, the non-ergodic 
behaviour manifests itself in the free-energy landscape (Amit 1989). This is expected 
to have several local minima, and to classify them we define a set of order parameters. 
The overlaps with the stored patterns will be 

where the angle bracket stands for a temporal average. The average ( V , )  gives directly 
the firing rate of neuron i, relative to the maximal rate T-’. The parameter x p  is, 
therefore, the relative mean firing rate of those neurons that should have an enhanced 
activity in pattern p (the qY exclude other neurons from the average). 

The overall mean activity of the excitatory network will be measured by 

and 

will measure the correlation in time of consecutive network activity states. 
Clearly, 0 c xw c 1 and 0 s y s x c 1. The special case y = x implies that the system 

is frozen into a single configuration, i.e. that the same neurons fire at each time step, 
while y = x2 represents a situation in which consecutive network states are completely 
uncorrelated. In this case xw = x for all p. Intermediate values for y will indicate 
some amount of correlation which may or may not be related to retrieval. 

Retrieval of a stored pattern will be realised when one of the overlaps, say XI, will 
be distinctly higher than the mean overall activity, while the other x F  will retain a 
uniform value. We emphasise again that an enhanced value for x1 signifies a higher 
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spike rate of the neurons selected by pattern 1, only. Their mean firing rate will be 
X ' / T  spikes per second. Since this rate is to be considerably lower than the maximal 
rate T - ' ,  x '  will have to be much smaller than 1. The mean activity x of the network 
should be considerably lower than XI, to afford clear recognition of pattern 1, and to 
comply with experimental evidence on mean firing rates in real systems (Abeles 1982, 
Anderson and Mountcastle 1983, Sur er a1 1984, Goldberg and Bruce 1985, Miyashita 
and Chang 1988). 

The mean activity of those neurons that are not selected by pattern 1, to be denoted 
by XI, is determined by the identity ax'  + (1 - u ) f '  = x. Hence, 

which is even lower than x. In other words, the enhanced activity of the neurons 
selected by a pattern is at the expense of the rest of the neurons. In  the following, we 
shall refer to the neurons which should have an enhanced activity upon retrieval of 
pattern p (those for which T ?  = 1) as actiue in pattern p, and to the rest of the neurons 
as passive in that pattern. Since the other patterns, p # 1, are uncorrelated, we shall 
have x W f l  = x. 

The simplest scenario would be if the activity of the neurons in the network were 
to depend only on whether a neuron is to be active or  passive in pattern 1. Then the 
mean activity in each group would be uniform. In such a case, the global correlation 
parameter y would be 

y = u ( x ' ) 2 + ( 1  - a ) ( f ' ) 2 .  (12) 
This represents a maximally disordered phase, within the constraints imposed by the 
emergence of pattern 1. The probability that any of the U N  neurons active in pattern 
1 fires, in any given time slice, is uniform and  equal to X I .  These neurons, therefore, 
give a contribution a ( x l ) '  to y. The ( 1 - a ) N  neurons passive in pattern 1 fire with 
probability f ' ,  and hence contribute the second term to y. This uniformity, however, 
represents an  extreme case. Empirically, the activity rates of different neurons are not 
uniform. A model affecting retrieval can operate with non-uniform activities, as long 
as the emergence of a single pattern is clearly signalled by the overlap parameter. The 
only additional requirement should be that high rates of individual neurons should be 
very rare. In practice, we shall usually encounter situations in which (12) is nearly 
satisfied. This represents a simple way of controlling N local quantities through the 
use of a single global parameter. 

Finally, to give some concrete numerical content to our retrieval scenario, consider 
an  example with a basic neuronal timescale of T 2 2.5 ms. To reproduce mean overall 
firing rates of 10 s-I that increase for active neurons to 80 s-' upon retrieval, one would 
need ~ ' ~ 0 . 2 ,  ~ 2 0 . 0 2 5 .  The analytical treatment to be developed will make sense 
only if within the proposed model this scenario can be realised in the meaningful 
parameter range. 

4. Mean-field theory in the p+00  limit 

We shall focus on the case in which both N and p are very large numbers, so we shall 
take the limits N, p - , ~ .  All the quantities will be functions of a, v, and a =pplN. 
While N + 00 is the usual thermodynamic limit, some care must be exercised in taking 
the limit p + 00. 
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4.1. The large-p limit 

The energy per neuron of a generic configuration is, in the present normalisation, a 
quantity of order p .  If the configuration is uncorrelated with any of the patterns, i.e. 
if x p  -- x for all 

E /  N p (  -+x’+ ( l /3v)x3) .  (13) 

Moreover, it can be shown that no configuration can have a finite (extensive) correlation 
with more than a finite number of patterns. This follows from the equality 

we have 

which holds for any given configuration (see e.g. appendix 1). The double brackets 
stand for averaging over the 7). Consequently, the error one makes by neglecting the 
differences x@ - x  does not grow linearly with p, and the energy is given, to leading 
order, by (13). In addition, the entropy per neuron does not grow with p. Therefore, 
the minima of the free energy will occur when (13) is minimised, i.e. for 

x = v + terms vanishing as p + CO. 

In other words, in the p + 00 limit, the mean activity of the network is constrained by 
the overall inhibition to be v. This happens, of course, provided v 1. In the following 
we shall always assume 0 < v < a. It is then convenient to use a set of properly subtracted 
order parameters 

1 

x*’=xfi - v ; = x - v  y = y - v y .  (15)  

Furthermore, a finite amount of noise will cause finite fluctuations in the energy, even 
when p + CO. So 2 will be a quantity of order l / p  (as indicated by (13)), while the P‘ 
will be of order l/G (equation (14)), except for at most a finite number of ‘condensed’ 
patterns, for which ? p  may take finite values. The free energy per neuron will also be 
finite, provided one subtracts the constant - v 2 p / 6 ,  which is the value of the energy 
(equation (13)), at its minimum. 

4.2. Replica-symmetric theory 

The free energy per spin is computed using the replica method (Sherrington and 
Kirkpatrick 1978, Amit et al 1987a): 

-1 
g = lim lim - [ ( (Z“ ) )  - 11 

“-0 N - K  pnN 

where 

is the partition function for n identical replicas of the system, each labelled by the 
index y = 1 , .  . . , n. The average over the quenched variables 77 is performed in two 
stages (Amit et a1 1987a): first over the infinite number of uncondensed patterns, then 
over a finite set of condensed ones, which retain their discrete nature. The calculation, 
sketched in appendix 2, is performed in the approximation of replica symmetry. In 
fact, our interest will inherently be directed to parameter regions in which replica- 
symmetry-breaking effects are expected to be small. After all, we are trying to stay 
away from freezing. 
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The result, after taking the n + 0 limit, is 

(18) 

where the index p runs over condensed patterns only, and the parameters .?, A, j ,  p 
satisfy the saddle-point equations 

1 1  dz 

a j +  U 
2P 2P( [a /P (1 -41+ j )2 ‘  

P = -  

The parameter A is essentially a chemical potential fixing the overall mean rate, which 
is constrained to be v, in the large-p limit, as explained above. The parameter p is 
related to the mean fluctuations of the overlaps with the uncondensed patterns. 

5. Phase diagram for (Y + 0 

Next, we analyse (19) in the limit a + O ,  despite the fact that the limit p + m  has been 
taken. This implies that p increases more slowly than N. In this case the analysis 
simplifies considerably and its results provide a reasonable approximation to the finite 
a case. 

The character of the solutions of (19) as a + 0 depends on whether or not p -+ 0 in 
this limit. If p + 0, the ‘slow’ noise, due to the storage of an infinite number of patterns 
(Amit et al 1987a), is negligible compared with the ‘fast’ noise T. At sufficiently high 
noise levels T, this is the case. The free energy becomes 

(20) g = -$((In 2 cosh f [ 2, -A]) )  +! (A-;  2.) (1 -2u)+-$ 1 ( ip)2 
c1 

and the saddle-point equations reduce to 

for which a set of simple solutions emerges. 
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5.1. The ergodic region 

The simplest solution is when no pattern condenses. Then 

A = 2T tanh-'(1-2v) j = - v ( l  - v )  

and the free energy is 

g = T [ v  In vS (1 - v )  ln(1- v)]. (23) 

The structure is transparent: no pattern is selected and the system is maximally 
disordered. The mean rate is constrained by the inhibition, and every neuron has a 
probability v to be in its firing state, i.e. 

(24) x = CC VI)/ N = v y = c( V,)*/ N = v2. 
I I 

The free energy is just the entropy term associated with this disordered state. 
This solution does not exist for all noise levels. It is destabilised at the critical level 

Note that in the noise range in which the ergodic solution exists, i.e. above this critical 
level, the mean rate does not depend on the noise, while one would expect that, as 
T + a, ( V) + 5. This comes about because in the limit p + 00, T must be much greater 
than p for the entropy term to dominate and shift x towards 5. 

5.2. Retrieval 

The next type of solution is a retrieval solution for a single pattern. This solution has 
one overlap different from v ;  we choose it to be = 1. Its value is obtained by taking 
the average over the 7 in the first two of equations (21), and combining them to find 
an equation for 2' alone: 

The parameters A and 9 are determined by 2' to be 

A = 2 T  [tanh-'(l-2v+-)] 2a2' 
( 1 - a )  

a I: = -v( 1 - v )  +- (2 ' ) ' .  
( 1 - 0 )  

The mean activity in the network is still v ( i t  is fixed in the p + CO limit), but the activity 
of those neurons that are active in  the first pattern has been enhanced, at the expense 
of the activity 2' of the quiescent ones 

VI)/ Na = v + 2 '  x '  = 
I 

a 
2' =c(1- 71)( v)/ N ( l  - a )  = v - 9 '  - 

I ( 1 - a j '  
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Within the two groups, however, there is still maximal disorder. This can be seen from 
the correlation parameter 

y = I( v;.)*/N = a ( x ' ) ' + ( l  - U ) ( X ' ) *  
I 

as explained in Q 3. The free energy has once more a transparent form 

g = T a [ x l  In x l + ( l  - x i )  ln(1 - x i ) ]  

+ T (  1 - a ) [ % '  In XI+ (1 -XI) In( 1 - X i ) ]  - (2 ' ) ' / 2  (30) 

as a sum of entropy and  energy terms. The entropy is reduced with respect to the 
disordered solution, because the system is now partitioned into the two subsystems of 
active and  passive neurons, but there is a lower energy (the last term of (30)) due  to 
the emergence of a correlated activity pattern. 

These are the retrieval solutions. Whenever the system flows into the basin of 
attraction of one such solution, we shall say that the corresponding pattern has been 
associatively retrieved by the stimulus, which is represented in the initial configuration. 
Retrieval solutions exist only below a critical noise level TR (see figure 1). At TR 
non-trivial solutions of (26) first appear, and  they correspond to local minima of the 
free energy. At a slightly lower level TM > T, they become the absolute minima of the 
free energy. They are destabilised at a level TG < T, .  In the interval TG-TR (whose 
extension depends on a and v ;  see figure 1) the activity XI of the 'on' neurons is 
greater than the mean activity v but smaller than v / a  (when x i +  v / a ,  % I ,  which has 
to be positive, approaches 0). Figure 1 shows, for sample values of a and v, that x1 

2.0 

1 .s 

k u  

1.0 

0.5 

......... 
\ ........... 

i 
i 
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4 
I 
I TG ............. 

0-0.1 
V -  0.025 

( 6 )  I ( C )  

0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0 2 0.4 0.6 

Figure 1. Activity levels in the disordered and retrieval solutions as a function of the noise 
level. The analytic result for XI (  T ) ,  in the limit a --* 0, is plotted for three different choices 
of the parameters a and v. Noise levels T are scaled by T,(a, Y ) .  In the disordered 
solutions x ' (  T )  = x(  T )  = v is represented by vertical lines, while in the retrieval solutions 
there is some mild dependence on the noise level. On the full lines the retrieval solutions 
are the absolute minima of the free energy. On the chain lines they are local minima. 
Retrieval solutions appear at the critical level T,(a, v )  and become global minima at 
T,(a, U). Broken lines indicate the freezing occurring below the spin-glass transitions at 
T, (disordered solution) and at T,  (retrieval solution). 

X '  
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does not depend strongly on the noise level. The equations determining TR, TM and 
TG are given in appendix 3. 

5.3. Spin-glass effects 

At TG the retrieval phases undergo a spin-glass transition. The disordered phase also 
undergoes a spin-glass transition, but at the higher noise level T,. The valleys of the 
free-energy landscape split into a multitude of sub-valleys, representing different 
microscopic realisations of states characterised by the same order parameters. For- 
mally, p # 0, and (29) is no longer satisfied. This means that some of the active neurons 
start firing at higher rates than others, until at very low noise levels all neurons ‘freeze’, 
either in their quiescent or in their active state. We are not interested in this low-noise 
regime, and so this analysis will stop here. 

5.4. Spurious states 

There are also other solutions of the saddle-point equations, besides retrieval and 
disordered ones. For example, one can identify symmetric n-mixture solutions, which 
represent equal mixtures of n activity patterns (see Amit et a1 (1985a) for the analogous 
type of solution in the Hopfield model). They appear only below the noise level at 
which retrieval solutions exist. Compact expressions for the equations satisfied by this 
family of solutions can be derived, and are reported in appendix 4. In general, we 
shall consider all solutions, with more than a single condensed pattern, as spurious 
states. Initial configurations that happen to be in their basin of attraction, will fail to 
produce unambiguous retrieval of a pattern. However, these solutions are not always 
stable. A calculation of the eigenvalues controlling their stability shows that the sign 
of these eigenvalues depends on a,  U and T. 

In those cases in which such solutions are stable local minima of the free energy, 
their importance in the dynamics of the network depends on the size of their basins 
of attraction, and on the barriers separating them from deeper local minima. Although 
we are not able to evaluate these features analytically, simulations indicate that the 
‘spurious’ basins, when they exist, are always limited in extent and are surrounded by 
low free-energy barriers. This is a favourable situation, since the retrieval states are 
the global minima of the free energy in a wide noise range, while spurious states are 
all but irrelevant to the dynamics. These features depend, though, on the detailed 
form (equation (6)) we chose for the inhibition. An inhibition depending only on the 
mean excitatory activity x, would make the system more susceptible to spurious states. 

5.5. Overall picture f o r  a = 0 

The conclusion is that at high levels of noise the network is disordered (ergodic), 
characterised by a mean activity U, and its state is devoid of any information. In an 
intermediate noise window ergodicity is broken, and the dynamics is dominated by 
attractors with a simple structure. The system tends to choose one of the stored activity 
patterns (the one closest to the initial activity distribution), and two mean firing 
frequencies emerge, one for the neurons active in that pattern and one for the passive 
ones. In this window the network behaves as envisaged in the scenario of 0 3.  Finally, 
if the fast, ‘thermal’ noise is too low, each single neurons is frozen in one of its two 
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states, and the system is clamped in one of the many possible spin-glass configurations, 
producing very high spike rates. 

6. Finite-a and finite-p corrections 

The results obtained in the previous section were derived in the limit p + c o  and 
a = p /  N + 0. Before comparing them with the behaviour of actual systems of finite 
size, it is important to evaluate the effects of relaxing these two simplifying assumptions. 
Assuming that the limit N + CO is a good approximation, one can distinguish two cases, 
and treat them separately: (1) Extensive loading, i.e. p = aN,  with finite a. (2) Low 
loading, i.e. p finite as N + 00. 

6.1. The eflects of extensive storage 

Equations (19) are valid for arbitrary a, provided replica symmetry holds, and they 
can be studied numerically to find, for example, the shifts in the order parameters and 
in the critical noise levels which occur for a f 0. One can also go back to the original 
replica theory and study the onset of replica-symmetry breaking. Here we shall limit 
ourselves to the appearance of non-uniform firing rates, at finite a. In particular, we 
shall concentrate on the retrieval phase. In other words, at finite a, during the retrieval 
of a pattern, the neurons which should be active in that pattern have different rates. 
The same is true for passive ones. These are spin-glass effects, which manifest them- 
selves in the deviation of y ,  the analogue of the Edwards-Anderson order parameter, 
from its uncorrelated value, given by (29). 

Let us consider a retrieval solution in the noise range in which it is stable, and 
expand (19) for small a. This way we obtain Taylor expansions for .2', A and j ,  whose 
zeroth-order terms are the ones previously discussed. The terms of O(a) violate (29), 
which we write in the form 

y = a [  ( X i ) *  + (a')'] + (1 - a ) [  (2)* + (6')'] (31) 

where x' and X' are the mean activities of active and passive neurons, respectively, 
correct to O(a). We have denoted the remaining corrections by a' and e'. They are 
quantities of O(&). Note that the correction is interpreted as a sum of two terms. 
One, proportional to a, is interpreted as corresponding to the contribution of the active 
neurons. The other, proportional to (1 - a ) ,  as the contribution of the passive neurons. 
What this implies is that not all neurons active in the retrieved pattern will have the 
same probability to fire, nor will the passive ones. The firing rate distribution, which 
for a = 0 consisted of two delta functions centred at x' and 2' respectively, now consists 
of two broader peaks. I f  (Y is small, the two peaks can be approximated by Gaussian 
distributions, whose widths, 2a' and 2 6 ' ,  are proportional to &. Explicitly one finds, 
to this order 

for the half-width of the peak of active neurons. The same expression, with 2' replacing 
x i ,  gives the width of the rate distribution for passive ones. 
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These are rather wide peaks, especially in the lower part of the allowed noise range. 
In fact, the denominator in (32 )  approaches zero as T +  TG, and the width of the 
peaks diverges. The lack of uniformity in the firing rates, that results from the ‘slow’ 
noise generated by the random overlaps with the increasing number of stored patterns, 
is a realistic feature of the model. However, too broad distributions imply that the 
firing rates of the most active neurons approach the maximal rate. This, in practice, 
is the most stringent constraint on the loading a of the network. The larger a, the 
wider the distributions and  the higher the fraction of active neurons that fires at high 
rates. 

6.2. The model at finite p 

It is straightforward to write the mean-field equations for the case when p remains 
finite as N + a3. They are 

The problem is that the solutions to these equations have no simple expression for 
finite p .  As p becomes very large, it is possible to substitute smooth distributions for 
the parameters depending on p discrete quantities, and  that is why, in fact, the present 
model is simple to analyse only in the limit p + w .  

Some understanding of the effects of a large but finite p can be obtained by 
expanding (33)  in l/p. Consider, for example, a retrieval solution, in which one of 
the overlaps, say x’, has a higher value than the others, which are equal. To perform 
the average over the 7’ for p > 1 ,  one approximates the binomial distribution of 
ZP,=2 7” by a Gaussian distribution of mean a ( p  - 1 )  and square width a(  1 - a ) (  p - l ) ,  
and then proceeds to solve for the two unknowns x1  and x’”, both taken as Taylor 
series in l /p.  This way one can calculate the first-order correction to the overall activity 
of the network, which leads to 

In the disordered state one finds 

T 1 - v  

P ”  
x = v +- In -+ o( l /pz )  (35)  

which can also be found by minimising the free energy obtained by adding to the 
energy of uncorrelated configurations (equation ( 13)) the entropy of the disordered 
state (equation (23)) 

(36) 

Equation (35 )  shows that for finite p the overall mean activity does depend on the 
noise level, and grows smoothly with the noise. One could also expand in the inverse 
parameter, p l  T, to find that as T + cc, x + 4. Corrections can then be computed in the 
framework of a ‘high-temperature’ expansion. 

At finite p there are fluctuations in the local field acting upon single neurons, and  
the activity distribution consists once more of a pair of broad peaks. The half-width 

g = p ( - !  ,x * +(1/3v)x3)+ T [ x l n x + ( l - x )  ln(1-x)]. 
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of the peak for active neurons can be found, from the same expansion in l/p, to be 

1 - a  1 1 2  1-21 
a l = x l ( l - x l )  (--) ln-+O(l/p). 

2’ ( 3 7 )  

This is again a rather strong effect: considering specific values for XI,  2’ and a, one 
realises that p has to be very large to suppress the fluctuations in the firing rates. 

7. Numerical simulations 

The model described by the Hamiltonian of ( 7 )  has been simulated for a variety of 
sizes N, storage loads p, sparse coding parameters a, inverse inhibition strengths v and 
noise levels T. We have chosen O < a  < f  and O <  v <  a. Typical values for N and p 
were N 5000-50 000, p = 50-200. The neurons were updated sequentially with the 
probability given by (2). A ‘time cycle’ was taken to be the time required for updating 
the complete set of neurons. The initial configuration of the network was either chosen 
at  random, assigning an  equal probability to be ‘on’ for each neuron; or  it was chosen 
to be correlated with one or  more of the stored patterns, by assigning different 
probabilities to be initially ‘on’ to neurons that were active or  passive in those patterns. 

At high noise levels the system is ergodic: it wanders freely in configuration space. 
The overall mean activity is regulated by the parameter v, and for sufficiently large N 
and p ,  and moderate T, it approaches the value v itself. What is meant by ‘high’ noise 
level depends on a and v ;  to get a rough estimate, it is useful to compare T with the 
critical level T, of (25). When T is very large (of the order of p ) ,  the mean activity 
approaches i. The correlation parameter y approaches the square of the mean activity 
when the noise level is that high, indicating a virtual absence of correlations. The 
network relaxes to its mean spatial activity equilibrium value with 1-2 time cycles, 
from any initial configuration. This then remains as its mean temporal rate of activity. 

At very low noise levels, T<< T,, the evolution of the network shows a marked 
dependence on the initial configuration. Once the mean activity has approached, in 
a few time cycles, its asymptotic value, most neurons stop changing state. Some fraction 
of them is always ‘on’, and the rest are ‘off’, and the state chosen by each neuron is 
strongly correlated with its state in the initial configuration. A small number of neurons 
still changes state now and then, but this number eventually vanishes if the noise level 
is set to zero. 

7.1. Retrieval 

The interesting behaviour occurs at intermediate noise levels, of the order of T,.  
Retrieval states appear, and  play the central role in the dynamics of the systems. When 
T is slightly above T,,  individual neurons keep changing their states under the influence 
of fast noise, but the overlaps with the embedded patterns stabilise in a few time cycles 
at definite values, around which they fluctuate mildly. Retrieval occurs when one of 
these overlaps is high and  the others are low, as in figure 2(b). Note, in the example 
in the figure, that the high overlap fluctuates around 0.15, which is rather close to 
v / a  = 0.2, while the other overlaps fluctuate around 0.04, close to v = 0.05. 

Starting from the high-noise region characterised by full ergodicity, and  performing 
simulations with decreasing levels of noise, one finds a rather abrupt change of 
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Figure 2. The overlaps (activity levels) of five patterns selected out of a total of 180, in 
three simulations performed on a system of 16000 neurons, with a =0.25, v=O.O5 and 
7 = 0.16 ( T /  T, = 1.12). ( a )  Random initial configuration with mean activity v ;  ( b )  initial 
configuration ordered to overlap with a single pattern; ( c )  initial configuration with equal 
overlaps with two patterns as in a symmetric 2-mixture. See text. 

behaviour at a critical level T =  1.5-2 T, (the precise value depends on a and U). 
Strong initial correlations with one of the patterns are no longer washed away during 
the evolution. In fact, most initial configurations are attracted toward one of the 
retrieval states. The value of the higher overlap, corresponding to the retrieved pattern, 
is always of the order of u / a ,  as in the example above, while the other overlaps have 
roughly the same value as the mean overall activity. I f  one of the patterns has a 
significantly higher overlap with the initial configuration, its retrieval state will be the 
one selected by the dynamics. If the initial configuration is uncorrelated with any of 
the patterns, the network sometimes continues to evolve in a completely disordered 
fashion, with roughly equal overlaps, and  a mean activity regulated by the strength of 
the inhibition. In other cases a fluctuation increases the overlap with a specific pattern, 
which is then enhanced until it stabilises at the value typical of the retrieval state. 

Figure 2 exemplifies this behaviour. Note that this phenomenon takes place despite 
the fact that the disordered state is a stable solution in the thermodynamic limit. Still, 
in figure 2 ( a ) ,  the fluctuations due to the finite size of the network are strong enough 
to make the system flow towards a randomly selected retrieval state, which corresponds 
to a global minimum of the free energy. This behaviour indicates a strong reduction 
of the free-energy barriers, which are naively expected to be of O( N ) .  

In figure 2 ( c )  the initial configuration is a symmetric mixture of two patterns. In 
the thermodynamic limit, for the parameters given, this solution is unstable. In fact, 
the system flows, faster than in the case of figure 2 ( a ) ,  to the retrieval state associated 
with one of the two privileged patterns. 

Inspecting the distribution of firing rates among individual neurons, one finds a 
marked non-uniformity (figure 3). For relatively small networks, a fraction of the 
neurons is essentially always ‘on’. To produce firing distributions characterised by 
two well defined peaks around a mean rate for active and passive neurons, one has 
to simulate large networks, so that both p and N / p  are large. The reason for this lack 
of uniformity is the slow noise discussed above. The expressions derived in the 
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Figure 3. Result of a sample simulation lasting 50 time cycles, with the parameters indicated. 
Initial configuration ordered according to pattern 1. Distribution of the number of spikes 
emitted by ( a )  active and i b )  passive neurons in pattern 1. Inset: spikes emitted by 20 
randomly chosen neurons over the 50 time cycles. The first column indicates whether the 
neuron was active ( x ) or passive (0) in pattern 1. 

preceding section (equations (32) and (37)) account quantitatively for the half-width 
of the peaks. 

As the noise level is decreased below T,, there is no  abrupt transition to the very 
low-noise behaviour. Rather, at first the distribution of firing rates gradually flattens, 
until it begins to show a peak corresponding to neurons active at every time cycle, and  
another peak of neurons that freeze in the quiescent state. This is accompanied by a 
time evolution of the overlaps which shows an  increasing dependence on their initial 
value, and  the p - 1 ‘low’ overlaps stabilise at widely different values, depending on 
the mutual correlations of the stored patterns among themselves and  with the initial 
configuration. 

Figure 3 also shows the actual dynamical evolution of 20 neurons randomly selected 
from a network of 20000. The spiking activity appears to proceed in a disordered 
fashion, except that neurons that are ‘on’ in the pattern are more active than those 
that are ‘off’: the former fire between 4 and 17 times in  the 50 cycles, while the latter 
at most (in one case out of 14) emit 3 spikes. Note that if we assume a time cycle of 
2.5 ms, the simulation extends for 125 ms, and a neuron that is active 10 times (for 
example, the second ‘on’ neuron from the bottom of the picture) is firing at a rate of 
80 s-’. Most ‘off’ neurons appear to fire either never or just once, so that their mean 
firing rate is of a few spikes per second. 

8. Discussion and conclusions 

The chief aim of the present work has been to address the problem of low spiking 
rates. The model proposed above illustrates a possible solution. The main idea is that 
to stabilise low levels of activity for the individual neurons, in a way that does not 
depend on a fine tuning of the model’s parameters, one has to have an  inhibitory 
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contribution to the input of the neurons, that dominates the excitatory contribution 
when the overall activity level becomes too high. The particular way in which this 
idea is realised in the present model, is by taking the excitation to grow linearly, as 
usual, with the mean activity, while the inhibition grows quadratically. This is just one 
possible choice that reproduces the effect. A different choice has been made, for 
example, in a model recently proposed (Rubin and Sompolinsky 1988) that addresses 
the same problem. There the inhibition is taken to be linear, while the excitation 
essentially does not grow with the mean activity. This is obtained by assuming a 
negative threshold for excitatory neurons, which prompts them to fire even in the 
absence of any input, while as soon as the network is activated, the linear inhibitory 
feedback takes control of the firing rates. 

We argue that the quadratic inhibition can represent in an effective way both the 
different dynamical characteristics of inhibitory neurons and the non-linear operation 
of inhibitory synapses. These aspects were absent in earlier simple models. We propose 
a way of incorporating them that solves the low-rates problem, while the network 
remains simple to understand. 

The particular choice of couplings, written in terms of a set of stored patterns, is 
made in order to keep the model in a familiar conceptual framework, and to ensure 
that it be amenable to a comprehensive analytical study. There are two disadvantages: 
the structure of the inhibitory couplings looks rather artificial, and the model functions 
properly only with very large networks. Neither is an essential flaw. Consider, for 
example, the requirement that p be large. Its role is to prevent excessive rates by some 
neurons, as indicated by the width of the activity distribution (equation (37)) .  The 
hyperactive neurons are those that, in the random assignment of quenched patterns, 
‘belong’ to fewer patterns, i.e. 2 ,  v? < p a .  The average inhibition acting upon these 
neurons is lower, and the reduction outweighs the corresponding reduction in the 
excitation. The effect is a fluctuation that becomes negligible a s p  + CC, but for moderate 
p values the highest firing rates are indeed rather high (see figure 3, where 0.5% of 
the active neurons fire more than 30 out of 50 time cycles). However, in a more 
comprehensive model that encompasses learning, one may conceive a compensatory 
effect that gradually strengthens the couplings of intensely firing neurons, thereby 
lowering their mean activity through enhanced inhibition. This would remove the 
requirement of very large p ,  which might thus disappear naturally when enlarging the 
scope of the theory. 

Clearly, any reformulation of the standard Hopfield model will have to deal with 
a host of questions which have already found answers in the previous context. Among 
those are issues of structured data sets, of retrieval of temporal sequences etc. This 
applies to the present model as well and points to a great deal of work that has to be 
done. 
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Appendix 1 

We derive here equation (14). For a fixed configuration 

((; (X, - X I ? ) )  =+ ((F; (f - 1) (f - 1) w)) 
= 1 N' ((; (f - 1)' v:)) = cy a X. (Al.1) 

1 - U  

Appendix 2 

We indicate here the main lines of the calculation used to derive the expression (18) 
from (16). One starts by introducing the subtracted overlap parameters through delta 
functions, so that 

where y is the replica index and t p y  is the Lagrange multiplier which imposes the 
definitions of the order parameters. 

Then one assumes that only a finite number s of patterns can condense, i.e. have 
a finite subtracted overlap 2" as N + w ,  and averages over the 7 distribution of the 
remaining p - s patterns. The integrals over the t ' l y  for p > s reduce to Gaussian 
integrals, after neglecting terms which vanish as N + CO. Next one introduces the global 
order parameters 

(A2.2) 

via delta functions. Denoting by Y the matrix with elements 

one obtains 
Y,, = Y^y6 + U, y # 6 Yyy=X*Y+v (A2.3) 

( (Z") )  = ( (2) d P Y  d tUY d t Y  d i Y  dyy6 dry' 
2 T  2n 

(A2.4) 
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(the index U runs over the condensed patterns only, the index A over the uncondensed 
ones). 

To handle the cubic term, one introduces one more order parameter 

(A2.5) 

to be able to perform the integrals over iPy for ,U > s. Considering that the ,y and 2 
are fluctuations of order O( l/G) and O( l /p )  respectively, one can also integrate over 
them. Then ((2")) can be evaluated at the saddle point as exp - ( n p N g )  where g is 
given by terms which remain finite as p ,  N + CO: 

(A2.6) 

One then uses a replica-symmetry ansatz and takes the limit n + 0. Using the saddle 
point equations for the 2" to eliminate the tu,  and writing p = -ir//3, A = i( t - r ) / p  
one arrives at (18) and (19). 

Appendix 3 

The critical noise levels TR, Thl and TG are obtained (in the LY -+ 0 limit) by solving a 
system of two equations in the variables 2' and T. The first equation is the same in 
all three cases, and it is the relation that determines the overlap of the selected pattern 
as a function of the noise levels, i.e. equation (26): 

where we have denoted with 9 the quantity that must vanish in order to satisfy the 
relation. 

The second equation of the system that yields the critical noise level TR, at which 
non-zero solutions of (A3.1) first appear, is obtained by requiring the vanishing of the 
derivative 

q ' (4 ' )  = 0 (A3.2) 

which is where the local minimum disappears. 
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To determine the critical level TM, at which the retrieval state becomes the global 
minimum of the free energy, we add  as second equation the requirement that the free 
energies of the disordered and retrieval states be equal, 

(A3.3) 

where g d S  is given by (23), and g,, by (30). 
Finally, to determine TG,  the level at which, in the a + 0 limit, the retrieval state 

undergoes a spin-glass transition, one imposes the divergence of the spin-glass suscepti- 
bility. This coincides with the vanishing of the denominator in the last of equations 
( 1 9 ) ,  and it can be written, by using the expression for y in the retrieval state (27) and 
the value of T, (equation (25)) as 

T - Tc+ ( x ^ ' ) *  = 0. (A3.4) 

Appendix 4 

In a symmetric solution, n patterns condense, and  their overlap parameters have the 
same value. The mean activity of an  individual neuron depends on whether the neuron 
is active in all the n condensed patterns, or just in n - 1 of them, or in n -2, and so 
on up  to neurons that are not active in any of those patterns. One can decompose the 
quenched averages in (21) as sums of contributions from all these classes of neurons. 
Denoting by 

xk = ~ + f t a n h ( P / 2 ) ( k P / u  - A )  (A4.1) 

the mean activity of neurons active in k of the n patterns, ( v  + x^" is the overlap with 
any of the n patterns) one has to solve the constraints for the overall mean activity 
and for the overlap with each of the patterns in the mixture, i.e. respectively, 

(A4.2) 

Equations (49) and (50) can be solved for the n +2 unknowns xk, .P, A, and non-trivial 
solutions exist in certain regions of parameter space. 

In the intermediate noise range in which the symmetric mixtures exist they are not 
always stable. The stability of these solutions is determined by the eigenvalue which 
controls the flow into a retrieval state. This eigenvalue is denoted by A,,, . It can be 
computed from the matrix of the second derivatives of the free energy. It is found to 
be 

(A4.3) 

and its sign depends on a, v and T. 
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